Comparative study of photocatalytic activities of hydrothermally grown ZnO nanorod on Si(001) wafer and FTO glass substrates

نویسندگان

  • Eun Hee Jeon
  • Sena Yang
  • Yeonwoo Kim
  • Namdong Kim
  • Hyun-Joon Shin
  • Jaeyoon Baik
  • Hyun Sung Kim
  • Hangil Lee
چکیده

ZnO nanorods have been grown on Si(001) wafer and fluorine-doped tin oxide (FTO) glass substrates for 1 and 4 h with the hydrothermal methods. The morphologies and photocatalytic activities of the ZnO nanorods were found to depend on the substrates. We investigated their properties by using spectroscopic analysis and demonstrated that the shape of nanorod and the ratios of external defects can be controlled by varying the substrates. Our experiments revealed that the nanorods grown on Si(001) have a single-crystalline wurtzite structure with (002) facets and that the number of surface oxygen defects increases with their length as the growth time increases. The nanorods grown on Si(001) have different facets, in particular wider (002) facets, and a higher ratio of the oxygen defect than the nanorods on FTO glass substrate. Moreover, the photocatalytic activities with respect to 2-aminothiophenol (2-ATP) of these nanorods were investigated with high-resolution photoemission spectroscopy (HRPES). We demonstrated that their photocatalytic activity is influenced by the ratios of surface oxygen defects, which varies with the substrate surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient photocatalytic hydrogen evolution over hydrogenated ZnO nanorod arrays.

Hydrogenated ZnO nanorod arrays (NRAs) grown on F-doped SnO(2) (FTO) glass substrates yield a benchmark specific hydrogen production rate of 122,500 μmol h(-1) g(-1), and exhibit excellent stability and recyclability.

متن کامل

Investigating structural, optical and photocatalytic properties of hydrothermally synthesized ZnO nanorod arrays with various aspect ratios

ZnO nanorods with various aspect ratios (by changing the time of growth between 0-240 min) were synthesized using hydrothermal method and were investigated using XRD, SEM, UV–Vis and PL. It was found that growth time is directly coupled with the length, orientation and aspect ratio of the nanorod arrays. The optical transmittance of the NR arrays indicated a regular decrement of average transmi...

متن کامل

Low-temperature growth of well-aligned zinc oxide nanorod arrays on silicon substrate and their photocatalytic application

Well-aligned and single-crystalline zinc oxide (ZnO) nanorod arrays were grown on silicon (Si) substrate using a wet chemical route for the photodegradation of organic dyes. Structural analysis using X-ray diffraction, high-resolution transmission electron microscopy, and selected area electron diffraction confirmed the formation of ZnO nanorods grown preferentially oriented in the (001) direct...

متن کامل

Fabrication of (001)-oriented monoclinic WO3 films on FTO substrates.

(001)-oriented monoclinic nanorod and microplate WO3 films are fabricated on commercial FTO-coated glass substrates by a rubbing seed layer and a spin-coating seed layer assisted by hydrothermal reactions. The nanorod film obtained by the rubbing seed layer assisted by hydrothermal reactions is more regular and perpendicular to the substrate.

متن کامل

A Study of ZnO Buffer Layer Effect on Physical Properties of ITO Thin Films Deposited on Different Substrates

The improvement of the physical properties of Indium Tin Oxide (ITO) layers is quite advantageous in photovoltaic applications. In this study the ITO film is deposited by RF sputtering onto p-type crystalline silicon (c-Si) with (100) orientation, multicrystalline silicon (mc-Si), and glass substrates coated with ZnO and annealed in vacuum furnace at 400°C. Electrical, optical, structural a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015